美容外科は大阪心斎橋の二重まぶたと鼻のプチ整形専門クリニック
HOME>美容情報ブログ

美容情報ブログ

美容外科大阪心斎橋コムネクリニック

レーザー [編集] 1957年、ベル研究所に勤めていたチャールズ・タウンズとアーサー・ショーローは、赤外線レーザーを真剣に研究し始めた。研究が進むと彼らは赤外線をやめ、可視光線に集中するようになった。当初この概念は「光学メーザー」と呼ばれていた。1958年、ベル研究所は光学メーザーについての特許を出願。同年、ショーローとタウンズはフィジカル・レビュー誌に光学メーザーの理論計算の原稿を送り、それが掲載された(Volume 112, Issue No. 6)。 同じ頃、コロンビア大学の大学院生ゴードン・グールドは、励起したタリウムのエネルギー準位についての学位論文を書いていた。グールドはタウンズと会って電磁放射の放出について話し合い、その後の1957年11月、"laser" や開放共振器のアイデアについてノートに書いた。さらに1958年、プロホロフも独自に開放共振器の使用を提案し、ソ連国内でそれを発表した。アメリカでもショーローとタウンズが開放共振器を使ったレーザーの設計で合意に達していた。彼らはプロホロフの発表も、グールドの未発表のアイデアも知らなかった。 1959年の学会で、ゴードン・グールドは論文 The LASER, Light Amplification by Stimulated Emission of Radiation の中で初めて "LASER" という言葉を公けにした[5][6]。グールドは、マイクロ波が "maser" なら、同様の概念には全て "-aser" を後ろにつけ、光 (light) なら "laser"、X線なら "xaser"、紫外線なら "uvaser" と呼ぶことを想定していた。しかし、レーザー (laser) 以外の用語は定着しなかった。 グールドのノートにはレーザーの用途として、分光法、干渉法、レーダー、原子核融合などが書かれていた。彼はその考えを発展させ、1959年4月に特許を出願した。しかし米国特許商標庁はグールドの出願を却下し、1960年にベル研究所に特許を与えた。そのため、28年におよぶ訴訟となった。グールドは1977年にマイナーな特許で勝利を勝ち取ったが、光ポンピングとガス放電を使ったレーザー装置についての特許をグールドに与えることを法廷が特許庁に命令したのは1987年のことだった。 1960年5月16日、カリフォルニアのヒューズ研究所のセオドア・メイマンが、コロンビア大学のタウンズやベル研究所のショーロー[7]やTRG (Technical Research Group) のグールドに先駆けて、最初のレーザー発生装置を開発した[8][9]。メイマンのレーザー装置は、ポンピング用の閃光放電管で合成ルビーを励起させるルビーレーザーであり、694ナノメートルの波長の赤い光を発生させる。しかし3準位レーザーであるため、パルス発振しかできなかった。直後にイラン人物理学者 Ali Javan と William R. Bennett、Donald Herriot が、ヘリウムとネオンを使った初のガスレーザーを開発した。Javenは1993年にアルバート・アインシュタイン賞を受賞した。バソフとJavenは半導体レーザーの概念を提案した。1962年、Robert N. Hall がガリウムヒ素を使った半導体レーザー素子を開発し、850ナノメートルの近赤外線レーザー発生に成功した。直後にニック・ホロニアックが可視光の半導体レーザーの実験に成功した。初期のガスレーザーと同様、初期の半導体レーザーはパルス発振しかできず、液体窒素で冷却する必要があった。1970年、ソ連のジョレス・アルフョーロフ、林厳雄、ベル研究所の Morton Panish がそれぞれ独自に常温で連続発振できるヘテロ接合構造を使った半導体レーザー素子を開発した。
投稿者 小宗クリニック③ | PermaLink | コメント(0) | トラックバック(0)
美容外科大阪心斎橋コムネクリニック

基盤となる理論 [編集] 1917年、アルベルト・アインシュタインの論文 Zur Quantentheorie der Strahlung(放射の量子論について)がレーザーとメーザーの理論的基礎を確立した。アインシュタインは、電磁放射の吸収、自然放出、誘導放出についての確率係数(アインシュタイン係数)に基づいて、マックス・プランクの輻射公式から新たな公式を導き出した。1928年、Rudolf W. Ladenburg は誘導放出および負の吸収という現象が存在することを確認した[1]。1939年、Valentin A. Fabrikant は誘導放出を使って「短い」波長を増幅できる可能性を予言した[2]。1947年、ウィリス・ラムと R. C. Retherford は水素スペクトルに明らかな誘導放出を発見し、誘導放出について世界初のデモンストレーションを行った[1]。1950年、アルフレッド・カストレル(1966年ノーベル物理学賞受賞)は光ポンピング法を提案し、数年後に Brossel、Winter と共に実験で確認した[3]。
投稿者 小宗クリニック③ | PermaLink | コメント(0) | トラックバック(0)
美容外科大阪心斎橋コムネクリニック

パルス発振 [編集] レーザーのもうひとつ重要な特徴は、ナノ秒~フェムト秒程度の、時間幅の短いパルス光を得ることが可能な点である。特殊な装置ではアト秒の時間幅も実現されている。レーザー以外の光パルス光源としてフラッシュランプ(キセノンランプ)、LEDなどがあるがレーザーに比較して低出力である。 パルスレーザーは短い時間幅の中にエネルギーを集中させることが出来るため、高いピーク出力が得ることができる。レーザー核融合用途などの特に大がかりなものでは、ペタワットクラスのレーザーも存在する。また時間幅の短いレーザーパルスは、時間とエネルギーの不確定性関係のため広いスペクトル幅を持つ。パルスレーザーは、時間分解分光や非線形光学、またレーザー核融合などの分野で重要な道具である。レーザーを用いた応用物理研究分野等では、ボーズアインシュタイン凝縮へパルスレーザーを使用し数論上の方程式を物理実験での具現化に実現に成功しており、フェムト秒のパルス光を発振させる為に連続光からパルス発振へ変換させるミラー(共振器内部の鏡)にSESAM半導体を用いたレーザーも使用されている。高分離解析時間、高分解性能の利得を応用しながら必要な出力を保つ為にはフィードバック制御機能が追加されないシンプルな媒質として欧米ではSESAM半導体を用いたシンプルなレーザーへのさらなる応用と研究が期待されている。連続光を反射せずある程度ため保持して出すというSESAM半導体の特性はパルスレーザーに物理的消耗変化として温度上昇する放熱管理がレーザー自体の寿命と利得を左右する。
投稿者 小宗クリニック③ | PermaLink | コメント(0) | トラックバック(0)
美容外科大阪心斎橋コムネクリニック

可干渉性(コヒーレンス) [編集] レーザー光を特徴づける性質のうち最も重要なのは、その高いコヒーレンス(可干渉性)である。レーザー光のコヒーレンスは、空間的コヒーレンスと時間的コヒーレンスに分けて考えることが出来る。 光の空間的なコヒーレンスは、光の波面の一様さを計る尺度である。レーザー光はその高い空間的コヒーレンスのゆえに、ほぼ完全な平面波や球面波を作ることができる。このためレーザー光は長距離を拡散せずに伝搬したり、非常に小さなスポットに収束したりすることが可能になる。この性質は、レーザーポインターや照準器、また光ディスクのピックアップ、加工用途、光通信など様々な応用上重要である。空間的にコヒーレントな光は、白熱灯などの通常光源と波長オーダーの大きさを持つピンホールを用いることでも作り出すことが出来る。しかし、この方法では光源から放たれた光のごく一部しか利用できないため、実用的な強度を得ることが難しい。空間的にコヒーレントな光を容易に実用的な強度で得られることがレーザーの最大の特長のひとつである。 一方、時間的なコヒーレンスは、光電場の周期性がどれだけ長く保たれるかを表す尺度である。時間的コヒーレンスの高いレーザー光は、マイケルソン干渉計などで大きな光路差を与えて干渉させた場合でも、鮮明な干渉縞を得ることが出来る。干渉縞を得ることの出来る最大の光路差をコヒーレンス長と呼び、時間的コヒーレンスの目安となる。レーザーの時間的コヒーレンスは、レーザーの単色性と密接な関係がある。一般に、時間的コヒーレンスの高い光ほど単色性が良い。特に、完全な単色光の電場は一定の周波数の三角関数であらわされるので、そのコヒーレント長は無限大である。高い時間的コヒーレンスを持つように配慮して設計されたレーザーは、ナトリウムランプなどよりもはるかに良い単色性を示す。レーザーの時間的コヒーレンスはレーザージャイロのように干渉を利用した応用において重要である。また、レーザーの単色性は、レーザー冷却などの用途に重要である。
投稿者 小宗クリニック③ | PermaLink | コメント(0) | トラックバック(0)
レーザー 出典: フリー百科事典『ウィキペディア(Wikipedia)』

レーザー(laser)とは、光(電磁波)を増幅し、コヒーレントな光を発生させる装置(レーザー装置)またはその光(レーザー光)をさす。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザー光は、可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。また、ビームとは定義が異なるためビームだからといってレーザーであるとは限らない。
投稿者 小宗クリニック③ | PermaLink | コメント(0) | トラックバック(0)
 
2